登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書

『簡體書』机器学习项目开发实战

書城自編碼: 2869666
分類:簡體書→大陸圖書→計算機/網絡软件工程/开发项目管理
作者: [美]Mathias Brandewinder[马蒂亚斯·布
國際書號(ISBN): 9787115429513
出版社: 人民邮电出版社
出版日期: 2016-07-01
版次: 1 印次: 1
頁數/字數: 264/
書度/開本: 128开 釘裝: 平装

售價:HK$ 88.5

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
帝国的叙事话语:国家身份塑造与冷战时期美国外交政策 北京大学人文学科文库
《 帝国的叙事话语:国家身份塑造与冷战时期美国外交政策 北京大学人文学科文库 》

售價:HK$ 151.8
世界上的城堡:一部千年古堡兴衰史(从军事建筑到中世纪城堡,59座经典古堡,高清全彩图文,精装收藏品质)
《 世界上的城堡:一部千年古堡兴衰史(从军事建筑到中世纪城堡,59座经典古堡,高清全彩图文,精装收藏品质) 》

售價:HK$ 261.8
缪斯的诞生 现代西方艺术观念生成简史
《 缪斯的诞生 现代西方艺术观念生成简史 》

售價:HK$ 85.8
信念危机:投资者心理与金融脆弱性
《 信念危机:投资者心理与金融脆弱性 》

售價:HK$ 74.8
喵星语解密手册
《 喵星语解密手册 》

售價:HK$ 86.9
新型戏剧编剧技巧初探
《 新型戏剧编剧技巧初探 》

售價:HK$ 82.5
历代玉器收藏与鉴赏
《 历代玉器收藏与鉴赏 》

售價:HK$ 396.0
铁腕拗相王安石:北宋的改革家和变法者
《 铁腕拗相王安石:北宋的改革家和变法者 》

售價:HK$ 107.8

 

建議一齊購買:

+

HK$ 156.6
《Cisco/H3C交换机配置与管理完全手册(第三版)》
+

HK$ 103.5
《React全栈:Redux+Flux+webpack+Bab》
+

HK$ 118.5
《后台开发:核心技术与应用实践》
+

HK$ 130.4
《深度学习:21天实战Caffe》
+

HK$ 59.7
《深度学习:方法及应用》
+

HK$ 114.0
《Abaqus经典例题集》
編輯推薦:
 本书向读者展示了,如何利用简单的算法和技术,从数据中学习,构建更聪明的.NET应用,以解决现实世界中更广泛的问题。读者将在熟悉的Visual Studio环境中编码各个项目,使用.NET环境中适合于机器学习的F#语言开发机器学习项目。如果你对F#还很陌生,本书将教会你入门所需的知识。如果你已经熟悉了F#,本书将是你在机器学习领域实践该语言的新的机会。
在一系列令人着迷的项目中,读者将学到:
* 从头开始构建一个光学字符识别(OCR)系统
* 编写一个通过例子学习的垃圾邮件过滤器
* 使用F#强大的类型提供程序与外部资源接口(在本书中是来自R语言的数据分析工具)
* 将数据转换为信息量更大的特征,并用它们作出精准的预测
* 在不知道目标的情况下找出数据中的模式
* 用回归模型预测数值
* 实现一个可以从经验中学习玩法的智能游戏
在阅读本书的过程中,你将学到适用于各种现实问题的基本思路,包括从广告到金融、医药和科学研究的多个领域。虽然有些机器学习算法使用了高级的数学理论,但是本书的焦点是简单而高效的方法。如果你喜欢挖掘代码与数据,那么这本书就是为你所写的。
內容簡介:
本书通过一系列有趣的实例,由浅入深地介绍了机器学习这一炙手可热的新领域,并且详细介绍了适合机器学习开发的Microsoft F#语言和函数式编程,引领读者深入了解机器学习的基本概念、核心思想和常用算法。书中的例子既通俗易懂,同时又十分实用,可以作为许多开发问题的起点。通过对本书的阅读,读者无须接触枯燥的数学知识,便可快速上手,为日后的开发工作打下坚实的基础。本书适合对机器学习感兴趣的.NET开发人员阅读,也适合其他读者作为机器学习的入门参考书。
關於作者:
Mathias Brandewinder是Microsoft F# 有价值专家(MVP),住在加州旧金山,在那里他为Clear Lines Consulting工作。作为一名当之无愧的数学极客,他很早就对构建模型帮助其他人利用数据做出更好的决策感兴趣。他拥有商业、经济和运营研究等多个硕士学位,在到达硅谷之后不久便爱上了编程。从.NET刚出现时开始,他就专业开发软件,为各行各业开发业务应用程序,重点是预测模型和风险分析程序。
目錄
目录
 
第1章 256级灰度 1
 1.1 什么是机器学习 2
 1.2 经典的机器学习问题:图像分类 3
 1.2.1 挑战:构建一个数字识别程序 3
 1.2.2 机器学习中的距离函数 5
 1.2.3 从简单的方法入手 5
 1.3 我们的第一个模型(C#版本) 6
 1.3.1 数据集组织 6
 1.3.2 读取数据 7
 1.3.3 计算图像之间的距离 9
 1.3.4 编写分类器 11
 1.4 那么,如何知道程序有效? 12
 1.4.1 交叉验证 12
 1.4.2 评估模型质量 13
 1.4.3 改进模型 14
 1.5 介绍用于机器学习的F# 15
 1.5.1 使用F#交互执行进行实时脚本编写和数据研究 15
 1.5.2 创建第一个F#脚本 18
 1.5.3 剖析第一个F#脚本 19
 1.5.4 创建函数管道 22
 1.5.5 用元组和模式匹配操纵数据 23
 1.5.6 训练和评估分类器函数 24
 1.6 改进我们的模型 26
 1.6.1 试验距离的另一种定义 26
 1.6.2 重构距离函数 27
 1.7 我们学到了什么 30
 1.7.1 在好的距离函数中能找到什么 30
 1.7.2 模型不一定要很复杂 31
 1.7.3 为什么使用F#? 31
 1.8 更进一步 32
第2章 垃圾邮件还是非垃圾邮件? 33
 2.1 挑战:构建一个垃圾邮件检测引擎 34
 2.1.1 了解我们的数据集 34
 2.1.2 使用可区分联合建立标签模型 35
 2.1.3 读取数据集 36
 2.2 根据一个单词决定 38
 2.2.1 以单词作为线索 38
 2.2.2 用一个数字表示我们的确定程度 39
 2.2.3 贝叶斯定理 40
 2.2.4 处理罕见的单词 42
 2.3 组合多个单词 42
 2.3.1 将文本分解为标记 42
 2.3.2 简单组合得分 43
 2.3.3 简化的文档得分 44
 2.4 实现分类器 45
 2.4.1 将代码提取到模块中 46
 2.4.2 文档评分与分类 47
 2.4.3 集合和序列简介 49
 2.4.4 从文档语料库中学习 51
 2.5 训练第一个分类器 53
 2.5.1

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.