登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書

『簡體書』带跳的随机微分方程理论及其应用

書城自編碼: 1876995
分類:簡體書→大陸圖書→自然科學數學
作者: 司徒荣
國際書號(ISBN): 9787510040566
出版社: 世界图书出版公司
出版日期: 2012-01-01
版次: 1 印次: 1
頁數/字數: 434/
書度/開本: 24开 釘裝: 平装

售價:HK$ 144.6

我要買

share:

** 我創建的書架 **
未登入.


新書推薦:
忧郁的秩序:亚洲移民与边境管控的全球化(共域世界史)
《 忧郁的秩序:亚洲移民与边境管控的全球化(共域世界史) 》

售價:HK$ 140.8
一周一堂经济学课:为了更好地理解这个世界
《 一周一堂经济学课:为了更好地理解这个世界 》

售價:HK$ 107.8
慢性胃炎的中医研究 胃
《 慢性胃炎的中医研究 胃 》

售價:HK$ 657.8
南移:宋代社会中心的转迁
《 南移:宋代社会中心的转迁 》

售價:HK$ 162.8
纯粹·水浒江湖:理解中国古代社会的一种另一条线索
《 纯粹·水浒江湖:理解中国古代社会的一种另一条线索 》

售價:HK$ 101.2
肌骨复健实践指南:运动损伤与慢性疼痛
《 肌骨复健实践指南:运动损伤与慢性疼痛 》

售價:HK$ 294.8
数据库原理与应用(MySQL版)
《 数据库原理与应用(MySQL版) 》

售價:HK$ 64.9
商业数据与分析决策:解锁数据资产,提高商业创新能力
《 商业数据与分析决策:解锁数据资产,提高商业创新能力 》

售價:HK$ 79.2

 

建議一齊購買:

+

HK$ 278.9
《Markov链与混合时间 (影印版)》
+

HK$ 288.6
《美国数学会经典影印系列:偏微分方程(第二版)(英文版)》
+

HK$ 235.9
《随机过程用的极限定理 第2版》
+

HK$ 200.6
《随机控制》
編輯推薦:
司徒荣编著的《带跳的随机微分方程理论及其应用(英文影印版)》是一部讲述随机微分方程及其应用的教程。内容全面,讲述如何很好地引入和理解ito积分,确定了ito微分规则,解决了求解sde的方法,阐述了girsanov定理,并且获得了sde的弱解。书中也讲述了如何解决滤波问题、鞅表示定理,解决了金融市场的期权定价问题以及著名的black-scholes公式和其他重要结果。特别地,书中提供了研究市场中金融问题的倒向随机技巧和反射sed技巧,以便更好地研究优化随机样本控制问题。这两个技巧十分高效有力,还可以应用于解决自然和科学中的其他问题。
內容簡介:
《带跳的随机微分方程理论及其应用(英文版)》中讲述了如何解决滤波问题、鞅表示定理,解决了金融市场的期权定价问题以及著名的black—scholes公式和其他重要结果。特别地,书中提供了研究市场中金融问题的倒向随机技巧和反射sed技巧,以便更好地研究优化随机样本控制问题。这两个技巧十分高效有力,还可以应用于解决自然和科学中的其他问题。
目錄
preface
acknowledgement
abbreviations and some explanations
Ⅰ stochastic differential equations with jumps inrd
1 martingale theory and the stochastic integral for point
 processes
 1.1 concept of a martingale
 1.2 stopping times. predictable process
 1.3 martingales with discrete time
 1.4 uniform integrability and martingales
 1.5 martingales with continuous time
 1.6 doob-meyer decomposition theorem
 1.7 poisson random measure and its existence
 1.8 poisson point process and its existence
 1.9 stochastic integral for point process. square integrable mar
tingales
2 brownian motion, stochastic integral and ito''s formula
 2.1 brownian motion and its nowhere differentiability
 2.2 spaces ~0 and z?
 2.3 ito''s integrals on l2
 2.4 ito''s integrals on l2,loc
 2.5 stochastic integrals with respect to martingales
 2.6 ito''s formula for continuous semi-martingales
 2.7 ito''s formula for semi-martingales with jumps
 2.8 ito''s formula for d-dimensional semi-martingales. integra tion
by parts
 2.9 independence of bm and poisson point processes
 2.10 some examples
 2.11 strong markov property of bm and poisson point
processes
 2.12 martingale representation theorem
3 stochastic differential equations
 3.1 strong solutions to sde with jumps
 3.1.1 notation
 3.1.2 a priori estimate and uniqueness of solutions
 3.1.3 existence of solutions for the lipschitzian case
 3.2 exponential solutions to linear sde with jumps
 3.3 girsanov transformation and weak solutions of sde with
jumps
 3.4 examples of weak solutions
4 some useful tools in stochastic differential equations
 4.1 yamada-watanabe type theorem
 4.2 tanaka type formula and some applications
 4.2.1 localization technique
 4.2.2 tanaka type formula in d-dimensional space
 4.2.3 applications to pathwise uniqueness and convergence of
solutions
 4.2.4 tanaka type formual in 1-dimensional space
 4.2.5 tanaka type formula in the component form
 4.2.6 pathwise uniqueness of solutions
 4.3 local time and occupation density formula
 4.4 krylov estimation
 4.4.1 the case for 1-dimensional space
 4.4.2 the case for d-dimensional space
 4.4.3 applications to convergence of solutions to sde with
jumps
5 stochastic differential equations with non-lipschitzian co
efficients
 5.1 strong solutions. continuous coefficients with p- conditions
1
 5.2 the skorohod weak convergence technique
 5.3 weak solutions. continuous coefficients
 5.4 existence of strong solutions and applications to ode
 5.5 weak solutions. measurable coefficient case
Ⅱ applications
6 how to use the stochastic calculus to solve sde
 6.1 the foundation of applications: ito''s formula and girsanov''s
theorem
 6.2 more useful examples
 7 linear and non-linear filtering
 7.1 solutions of sde with functional coefficients and girsanov
theorems
 7.2 martingale representation theorems functional coefficient
case
 7.3 non-linear filtering equation
 7.4 optimal linear filtering
 7.5 continuous linear filtering. kalman-bucy equation
 7.6 kalman-bucy equation in multi-dimensional case
 7.7 more general continuous linear filtering
 7.8 zakai equation
 7.9 examples on linear filtering
8 option pricing in a financial market and bsde
 8.1 introduction
 8.2 a more detailed derivation of the bsde for option
pricing
 8.3 existence of solutions with bounded stopping times
 8.3.1 the general model and its explanation
 8.3.2 a priori estimate and uniqueness of a solution
 8.3.3 existence of solutions for the lipschitzian case
 8.4 explanation of the solution of bsde to option pricing
 8.4.1 continuous case
 8.4.2 discontinuous case
 8.5 black-scholes formula for option pricing. two approaches
 8.6 black-scholes formula for markets with jumps
 8.7 more general wealth processes and bsdes
 8.8 existence of solutions for non-lipschitzian case
 8.9 convergence of solutions
 8.10 explanation of solutions of bsdes to financial markets
 8.11 comparison theorem for bsde with jumps
 8.12 explanation of comparison theorem. arbitrage-free
market
 8.13 solutions for unbounded terminal stopping times
 8.14 minimal solution for bsde with discontinuous drift
 8.15 existence of non-lipschitzian optimal control. bsde
case
 8.16 existence of discontinuous optimal control. bsdes in rl
 8.17 application to pde. feynman-kac formula
9 optimal consumption by h-j-b equation and lagrange method
 9.1 optimal consumption
 9.2 optimization for a financial market with jumps by the lagrange
method
 9.2.1 introduction
 9.2.2 models
 9.2.3 main theorem and proof
 9.2.4 applications
 9.2.5 concluding remarks
10 comparison theorem and stochastic pathwise control ''
 10.1 comparison for solutions of stochastic differential
equations
 10.1.1 1-dimensional space case
 10.1.2 component comparison in d-dimensional space
 10.1.3 applications to existence of strong solutions. weaker
conditions
 10.2 weak and pathwise uniqueness for 1-dimensional sde with
jumps
 10.3 strong solutions for 1-dimensional sde with jumps
 10.3.1 non-degenerate case
 10.3.2 degenerate and partially-degenerate case
 10.4 stochastic pathwise bang-bang control for a non-linear
system
 10.4.1 non-degenerate case
 10.4.2 partially-degenerate case
 10.5 bang-bang control for d-dimensional non-linear systems
 10.5.1 non-degenerate case
 10.5.2 partially-degenerate case
11 stochastic population conttrol and reflecting sde
 11.1 introduction
 11.2 notation
 11.3 skorohod''s problem and its solutions
 11.4 moment estimates and uniqueness of solutions to rsde
 11.5 solutions for rsde with jumps and with continuous coef-
ficients
 11.6 solutions for rsde with jumps and with discontinuous co-
etticients
 11.7 solutions to population sde and their properties
 11.8 comparison of solutions and stochastic population
control
 11.9 caculation of solutions to population rsde
12 maximum principle for stochastic systems with jumps
 12.1 introduction
 12.2 basic assumption and notation
 12.3 maximum principle and adjoint equation as bsde with
jumps
 12.4 a simple example
 12.5 intuitive thinking on the maximum principle
 12.6 some lemmas
 12.7 proof of theorem 354
a a short review on basic probability theory
 a.1 probability space, random variable and mathematical ex-
pectation
 a.2 gaussian vectors and poisson random variables
 a.3 conditional mathematical expectation and its properties
 a.4 random processes and the kolmogorov theorem
b space d and skorohod''s metric
c monotone class theorems. convergence of random processes41
 c.1 monotone class theorems
 c.2 convergence of random variables
 c.3 convergence of random processes and stochastic integrals
references
index

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.