新書推薦:

《
江苏文库:明清之际江南文化遗民研究
》
售價:HK$
115.6

《
何以中国·忠臣之变:大宋989—1051
》
售價:HK$
80.2

《
西游的黎明:三界神魔往事
》
售價:HK$
85.0

《
壹卷YEBOOK——胡克与16世纪的英国政制危机
》
售價:HK$
89.7

《
金融中的机器学习:理论与实践
》
售價:HK$
140.8

《
五代十国史(上、下册)
》
售價:HK$
184.8

《
低空经济:开辟天空下的商业新蓝海
》
售價:HK$
85.8

《
飞越疯人院
》
售價:HK$
75.9
|
| 編輯推薦: |
|
本书第一版被列入普通高等教育“九五”教育部重点教材”。与同类教材相比,本书有以下特点:1. 突出几何思想的教育, 强调形与数的结合; 2. 方法上强调解析法和综合法并重,力求使抽象内容变得通俗易懂; 内容编排上采用“实例—理论—应用”的方式, 具体易懂; 内容选取上兼顾各类高等学校的教学情况, 具有广泛的适用性。3. 在主要讲解空间解析几何的基本内容和方法的基础上,介绍仿射理论、仿射变换和保距变换以及射影几何学中的基本知识, 较好地反映了几何学课程内容的全貌。
|
| 內容簡介: |
|
本书是学习几何学的入门教材.书中既讲解了空间解析几何的基本内容和方法,又讲解了仿射几何中的基本内容和思想,还介绍了射影几何中的基本知识,较好地反映了几何学课程内容的全貌.全书共分五章,每一章都配有一定数量的习题,书末附有部分习题答案和提示,便于读者深入学习或自学.本书突出几何思想的教育,强调形与数的结合;方法上强调解析法和综合法并重;内容编排上采用“实例—理论—应用”的方式,具体易懂;内容选取上兼顾各类高等学校的教学情况,具有广泛的适用性.本书表达通顺,说理严谨,阐述由浅入深、深入浅出.因此,本书是一本颇具特色、受广大高等学校欢迎的“解析几何”和“几何学”课程教材.本书不仅可作为高等学校本科生“解析几何”和“几何学”课程的教材,而且对于那些对几何学有兴趣的大学生和其他读者来说,也是一本适宜的课外读物或参考书.
|
| 關於作者: |
|
尤承业 ---------------------------- 尤承业:北京大学数学科学学院教授、博士生导师。曾在我社出版的教材有《基础拓扑学讲义》《解析几何》,其中《解析几何》是教育部普通高等教育”九五”教育部重点教材。
|
| 目錄:
|
解析几何(第二版)
第一章 向量代数 §1 向量的线性运算 1.1 向量的概念、记号和几何表示 1.2 向量的线性运算 1.3 向量的分解 1.4 在三点共线问题上的应用 习题 1.1
§2 仿射坐标系 2.1 仿射坐标系的定义 2.2 向量的坐标 2.3 几何应用举例 习题 1.2
§3 向量的内积 3.1 向量的投影 3.2 内积的定义 3.3 内积的双线性性质 3.4 用坐标计算内积 习题 1.3
§4 向量的外积 4.1 三个不共面向量的定向 4.2 外积的定义 4.3 外积的双线性性质 4.4 用坐标计算外积 习题 1.4
§5 向量的多重乘积 5.1 二重外积 5.2 混合积 5.3 用坐标计算混合积 习题 1.5
第二章 空间解析几何 §1 图形与方程 1.1 一般方程与参数方程 1.2 柱坐标系和球坐标系 习题 2.1
§2 平面的方程 2.1 平面的方程 2.2 平面一般方程的系数的几何意义 2.3 平面间的位置关系 *2.4 三元一次不等式的几何意义 习题 2.2
§3 直线的方程 3.1 直线的两类方程 3.2 直线与平面的位置关系,共轴平面系 3.3 直线与直线的位置关系 习题 2.3
§4 涉及平面和直线的度量关系 4.1 直角坐标系中平面方程系数的几何意义 4.2 距离 4.3 夹角 习题 2.4
§5 旋转面、柱面和锥面 5.1 旋转面 5.2 柱面 5.3 锥面 习题 2.5
§6 二次曲面 6.1 压缩法 6.2 对称性法 6.3 平面截线法 6.4 在仿射坐标系中五种特殊二次方程的图像 习题 2.6
§7 直纹二次曲面 7.1 双曲抛物面的直纹性 7.2 单叶双曲面的直纹性 习题 2.7
第三章 坐标变换与二次曲线的分类 §1 仿射坐标变换的一般理论 1.1 过渡矩阵、向量和点的坐标变换公式 1.2 图形的坐标变换公式 1.3 过渡矩阵的性质 1.4 代数曲面和代数曲线 1.5 直角坐标变换的过渡矩阵、正交矩阵 习题 3.1
§2 二次曲线的类型 2.1 用转轴消去交叉项 2.2 用移轴进一步简化方程 习题 3.2
§3 用方程的系数判别二次曲线的类型·不变量 3.1 二元二次多项式的矩阵 3.2 二元二次多项式的不变量 I , I , I 3.3 用不变量判别二次曲线的类型 *3.4 半不变量 K 习题 3.3
§4 圆锥曲线的仿射特征 4.1 直线与二次曲线的相交情况 4.2 中心 4.3 渐近方向 4.4 抛物线的开口朝向 4.5 直径与共轭 4.6 圆锥曲线的切线 *4.7 两点的共轭关系,点的极线和直线的极点 习题 3.4
§5 圆锥曲线的度量特征 5.1 抛物线的对称轴 5.2 椭圆和双曲线的对称轴 习题 3.5
第四章 保距变换和仿射变换 §1 平面的仿射变换与保距变换 1.1 一一对应与可逆变换 1.2 平面上的变换群 1.3 保距变换 1.4 仿射变换 习题 4.1
§2 仿射变换基本定理 2.1 仿射变换决定的向量变换 2.2 仿射变换基本定理 2.3 关于保距变换 2.4 二次曲线在仿射变换下的像 2.5 仿射变换的变积系数 习题 4.2
§3 用坐标法研究仿射变换 3.1 仿射变换的变换公式 3.2 变换矩阵的性质 3.3 仿射变换的不动点和特征向量 3.4 保距变换的点变换公式 习题 4.3
§4 图形的仿射分类与仿射性质 4.1 平面上图形的仿射分类和度量分类 4.2 仿射概念与仿射性质 *4.3 几何学的分类 习题 4.4
*§5 空间的仿射变换与保距变换简介 5.1 定义和线性性质 5.2 空间仿射变换导出的空间向量的线性变换 5.3 空间仿射变换基本定理 5.4 在规定的坐标系中空间仿射变换的变换公式 5.5 不动点和特征向量 5.6 空间的刚体运动 习题 4.5
第五章 射影几何初步 §1 中心投影 习题 5.1
§2 射影平面 2.1 中心直线把与扩大平面 2.2 扩大平面和中心直线把上的“线”结构 2.3 点与线的关联关系 2.4 射影平面的定义 习题 5.2
§3 交比 3.1 普通几何中的交比 3.2 中心直线把和扩大平面上的交比 3.3 调和点列与调和线束 习题 5.3
§4 射影坐标系 4.1 中心直线把上的射影坐标系 4.2 扩大平面上的射影坐标系 4.3 扩大平面上的仿射–射影坐标系 4.4 射影坐标的应用 4.5 对偶原理 习题 5.4
§5 射影坐标变换与射影变换 5.1 射影坐标变换 5.2 射影映射和射影变换 5.3 射影映射基本定理 5.4 射影变换公式和变换矩阵 习题 5.5
§6 二次曲线的射影理论 6.1 射影平面上的二次曲线及其矩阵 6.2 二次曲线的射影分类 6.3 两点关于圆锥曲线的共轭关系 6.4 配极映射 6.5 几个著名定理 习题 5.6
附录 行列式与矩阵 一、行列式 二、矩阵
部分习题答案和提示
|
|