《Algebra Basic Concepts of Abstract Algebra(代数——抽象代数基本概念)(第二版)》是作者在2014年在科学出版社出版的《algebra》基础之上,结合近几年的教学实践进行了大量篇幅修改而成的,主要将前面教材中一些较难的习题改成了讲解内容,添加了一些章节的,简化了一些证明,尤其是主理想整环上有限生成模的结构定理的证明,添加了一些新的习题,完善了*后一章*后一节有关同调的内容。《Algebra Basic Concepts of Abstract Algebra(代数——抽象代数基本概念)(第二版)》短小精悍,所有定理的证明都经过精心处理,故以较小的篇幅涵盖了代数学与同调代数以及表示理论的内容;联系了高等代数或线性代数的内容,使得在更高层次理解高等代数,并能够更加容易理解抽象的内容;对焦代数学前沿,这是其他代数书没有的。
目錄:
ContentsPreface IllCHAPTER 1Groups 11.1 Semigroups, Monoids and Groups 11.2 Subgroups 71.3 The Action of a Group on a Set 121.4 The Sylow Theorem 201.5 Homomorphisms 221.6 Direct Products and Direct Sums 301.7 Simple Groups 391.8 Nilpotent Groups and Solvable Groups 41CHAPTER 2Rings and Modules 472.1 Rings and Ring Homomorphisms 472.2 Modules, Indecomposable Modules and Free Modules 612.3 Projective Modules and Injective Modules 742.4 Homological Dimensions 822.5 Tensor Product and Weak Dimension 912.6 Localization 1032.7 Noetherian Modules and UFD 1132.8 Finitely Generated Modules Over a PID 124CHAPTER 3Fields and Galois Theory 1353.1 Extensions of Fields 1353.2 Splitting Fields and Normality 1423.3 The Fundamental Theorem of Galois Theory 1513.4 Radical Extensions 1603.5 Construction with Straight-Edge and Compass 1633.6 The Hilbert Nullstellensatz 166CHAPTER 4Introduction to Various Algebras 1754.1 Associative Algebras 1754.2 Coassociative Coalgebras and Hopf Algebras 1884.3 Nonassociative Algebras 193CHAPTER 5Category 2035.1 Category, Limit and Colimit 2035.2 Functors and Natural Transformations 2085.3 Abelian Categories and Homological Groups 216Bibliography 227Index 229