新書推薦:

《
发明与经济增长
》
售價:HK$
97.9

《
探秘人体
》
售價:HK$
108.9

《
从奥林匹斯山走来:德意志的考古学与爱希腊主义(1750—1970)
》
售價:HK$
140.8

《
乱世流离三百年:两晋南北朝十二讲(3版)两晋南北朝历史入门读物,东晋仍为皇权政治时代
》
售價:HK$
107.8

《
二战图文史:战争历程完整实录
》
售價:HK$
239.8

《
中世纪生活图鉴(保命tips:别被蜗牛追杀,更别惹会爆炸的猫!)
》
售價:HK$
96.8

《
草原帝国
》
售價:HK$
140.8

《
战争日记(硝烟中的生命诗笺 战争亲历者以第一视角记录一战凡尔登战役)
》
售價:HK$
86.9
|
| 內容簡介: |
|
准的脑血管分割成为脑血管疾病诊治的重要辅助手段,受到研究者的广泛关注。深度学习是一种启发式方法,它鼓励研究人员通过驱动数据集从图像中得出答案。随着数据集和深度学习理论的不断发展,在脑血管分割方面取得了重要成果。为了全面分析新的脑血管分割,本书以深度学习为核心主题,涵盖了基于滑动窗口的模型、基于U-Net的模型、基于卷积经网络的其他模型、基于小样本数据集的模型、基于半监督或无监督学习的模型、基于征融合的模型、基于Transformer的模型和基于几何图形学的模型。本书组织了不同模型的发展,改进以及具体案例,探讨了领域的发展趋势和展望。
|
| 目錄:
|
Chapter 1 Introduction for Cerebrovascular Segmentation 1
1.1 Overview 1
1.2 Background 2
1.3 Cerebrovascular Imaging Modalities 6
1.4 Open Source for Medical Images Segmentation 9
1.5 Discussion of Development Trend 12
1.6 Discussion of Quantitative Assessment 13
1.7 Challenges and Opportunities 16
1.8 Conclusions 17
Chapter 2 DL-based Cerebrovascular Segmentation Model 19
2.1 Sliding Window Based Models 19
2.2 U-Net Based Models 20
2.3 Other CNNs Based Models 24
2.4 Small-Sample Based Models 26
2.5 Semi-Supervised / Unsupervised Learning Models 28
2.6 Fusion Based Models 30
2.7 Transformer Based Models 31
2.8 Graphics Based Models 32
Chapter 3 Generative Consistency for Semi-Supervised Learning
Cerebrovascular Segmentation from TOF-MRA 35
3.1 Overview 35
3.2 Introduction 36
3.3 Methods 39
3.4 Experiments 47
3.5 Discussion 51
3.6 Conclusion 55
Chapter 4 A Learnable Gabor Convolution Kernel for Vessel
Segmentation 57
4.1 Overview 57
4.2 Introduction 58
4.3 Methods 60
4.4 Experiments and Discussion 69
4.5 Conclusion 79
Chapter 5 Integration-and Separation-Aware Adversarial Model
for Cerebrovascular Segmentation from TOF-MRA 80
5.1 Overview 80
5.2 Introduction 81
5.3 Methods 84
5.4 Datasets 90
5.5 Experiments and Results 90
5.6 Discussion 96
5.7 Conclusion 100
Chapter 6 Cerebrovascular Segmentation in Phase-Contrast
Magnetic Resonance Angiography by Multi-Feature
Fusion and Vessel Completion 101
6.1 Overview 101
6.2 Introduction 102
6.3 Methods 105
6.4 Results 113
6.5 Discussion 116
6.6 Conclusion 126
References 128
|
|