登入帳戶  | 訂單查詢  | 購物車/收銀台(0) | 在線留言板  | 付款方式  | 運費計算  | 聯絡我們  | 幫助中心 |  加入書簽
會員登入   新用戶登記
HOME新書上架暢銷書架好書推介特價區會員書架精選月讀2024年度TOP分類瀏覽雜誌 臺灣用戶
品種:超過100萬種各類書籍/音像和精品,正品正價,放心網購,悭钱省心 服務:香港台灣澳門海外 送貨:速遞郵局服務站

新書上架簡體書 繁體書
暢銷書架簡體書 繁體書
好書推介簡體書 繁體書

十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書
七月出版:大陸書 台灣書
六月出版:大陸書 台灣書
五月出版:大陸書 台灣書
四月出版:大陸書 台灣書
三月出版:大陸書 台灣書
二月出版:大陸書 台灣書
一月出版:大陸書 台灣書
12月出版:大陸書 台灣書
11月出版:大陸書 台灣書
十月出版:大陸書 台灣書
九月出版:大陸書 台灣書
八月出版:大陸書 台灣書

『簡體書』面向AI大模型:遥感影像智能解译与应用

書城自編碼: 4064637
分類:簡體書→大陸圖書→教材研究生/本科/专科教材
作者: 冯鹏铭 著
國際書號(ISBN): 9787576715422
出版社: 哈尔滨工业大学出版社
出版日期: 2024-06-01

頁數/字數: /
書度/開本: 16开 釘裝: 平装

售價:HK$ 173.8

我要買

share:

** 我創建的書架 **
未登入.



新書推薦:
中国古代小说在东亚的传播影响(全三卷)
《 中国古代小说在东亚的传播影响(全三卷) 》

售價:HK$ 580.8
盛夏之死 刘子倩译本
《 盛夏之死 刘子倩译本 》

售價:HK$ 42.9
价值驱动增长:AI时代工业品B2B营销战略、方法与案例
《 价值驱动增长:AI时代工业品B2B营销战略、方法与案例 》

售價:HK$ 97.9
投资开拓者、英雄和失败者:控制情绪和避免偏见的方法
《 投资开拓者、英雄和失败者:控制情绪和避免偏见的方法 》

售價:HK$ 76.8
芯片设计基石:EDA产业全景与未来展望
《 芯片设计基石:EDA产业全景与未来展望 》

售價:HK$ 86.9
胡适年谱长编
《 胡适年谱长编 》

售價:HK$ 1848.0
凌空之魂:五十岚大介短篇集
《 凌空之魂:五十岚大介短篇集 》

售價:HK$ 47.1
中国石窟艺术精讲(24堂课、10个地域、23座代表性石窟群 1本书读懂1700余年的中国石窟艺术)
《 中国石窟艺术精讲(24堂课、10个地域、23座代表性石窟群 1本书读懂1700余年的中国石窟艺术) 》

售價:HK$ 107.8

內容簡介:
With the rapid development of deep learning technology, the information extraction methods of remotesensing images are rapidly changing from traditional statistics to data-driven intelligent interpretation. In thebackground of the rapid development of artificial intelligence technology, and supported by major projects suchas National Science and Technology Major Project of China High-resolution Earth Observation System, NationalNatural Science Foundation of China, Civil Aerospace ”14th Five-Year” Technology Pre-research Project, theauthors and their team have made a series of research achievements in the filed of intelligent interpretation andapplication technology of remote sensing images. This book starts from the development status of remote sensingimage intelligent interpretation and application technology, systematically introduces the main contents of remotesensing image intelligent interpretation and application, focusing on remote sensing image intelligent qualityimprovement, intelligent expansion and sample augmentation, object detection, fine-grained target recognition,semantic segmentation, multimodal remote sensing image joint intelligent interpretation as well as intelligentinterpretation and application platform.This book can be used as a reference book for remote sensing related majors in colleges and universities,and also for research scholars and staff in the field of remote sensing. With the rapid development of deep learning technology, the information extraction methods of remotesensing images are rapidly changing from traditional statistics to data-driven intelligent interpretation. In thebackground of the rapid development of artificial intelligence technology, and supported by major projects suchas National Science and Technology Major Project of China High-resolution Earth Observation System, NationalNatural Science Foundation of China, Civil Aerospace ”14th Five-Year” Technology Pre-research Project, theauthors and their team have made a series of research achievements in the filed of intelligent interpretation andapplication technology of remote sensing images. This book starts from the development status of remote sensingimage intelligent interpretation and application technology, systematically introduces the main contents of remotesensing image intelligent interpretation and application, focusing on remote sensing image intelligent qualityimprovement, intelligent expansion and sample augmentation, object detection, fine-grained target recognition,semantic segmentation, multimodal remote sensing image joint intelligent interpretation as well as intelligentinterpretation and application platform. 來源:香港大書城megBookStore,http://www.megbook.com.hk
This book can be used as a reference book for remote sensing related majors in colleges and universities,and also for research scholars and staff in the field of remote sensing.
目錄
Chapter 1 Introduction
1.1 Connotation
1.2 Development Demand
1.3 Current Development Situation
1.4 Existing Problems
1.5 Development Trend
1.6 Chapter Summary
Chapter 2 Intelligent Quality Enhancement of Remote Sensing Images
2.1 Improvement of Signal-to-Noise Ratio in Remote Sensing Images
2.2 Spatial Resolution Improvement of Remote Sensing Images
2.3 SAt/Image Despeckling Method Based on Adversarial Learning
2.4 Chapter Summary
Chapter 3 Intelligent Expansion and Sample Amplification of Remote Sensing Images
3.1 Overview
3.2 Intelligent Assisted Annotation
3.3 Intelligent Sample Expansion
3.4 Sample Self-Growth
3.5 Chapter Summary
Chapter 4 Intelligent Object Detection in Remote Sensing Images
4.1 Overview
4.2 Deep Learning Based Object Detection Framework
4.3 Object Detection Datasets in Remote Sensing Images and Evaluation Metrics
4.4 Target Representation Methods in Remote Sensing Images
4.5 Label Assignment Strategy in Remote Sensing Images
4.6 The Detection Head for Object Detection in Remote Sensing Images
4.7 Loss Function for Object Detection
4.8 Chapter Summary
Chapter 5 Fine-Grained Target Recognition of Remote Sensing Image
5.1 Overview
5.2 Challenges of Fine-Grained Recognition
5.3 Few-Shot Target Recognition of Multi-Scale Network
5.4 Classification of Highly Imbalanced Aviation Scenes
5.6 Chapter Summary
Chapter 6 Intelligent Semantic Segmentation
6.1 Overview
6.2 Design of Semantic Segmentation Model Based on Deep Learning
6.4 Chapter Summary
Chapter 7 Joint Intelligent Interpretation of Multimodal Remote Sensing Images
7.1 Overview
7.2 Muhimodal Remote Sensing Dataset Construction
7.3 Heterogeneous Remote Sensing Image Registration
7.4 Fusion and Classification of Multimodal Data
7.5 Chapter Summary
Chapter 8 Intelligent Remote Sensing Image Analysis: A Cognitive Platform for Interpretation
8.1 Overview
8.2 Platform Architecture
8.3 Platform Introduction
8.4 Chapter Summary
References

 

 

書城介紹  | 合作申請 | 索要書目  | 新手入門 | 聯絡方式  | 幫助中心 | 找書說明  | 送貨方式 | 付款方式 香港用户  | 台灣用户 | 海外用户
megBook.com.hk
Copyright © 2013 - 2025 (香港)大書城有限公司  All Rights Reserved.